Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Foodborne Pathog Dis ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635963

ABSTRACT

Over the past decade, there has been a rise in U.S. backyard poultry ownership, raising concern for residential area antimicrobial-resistant (AMR) Salmonella contamination. This study aims to lay the groundwork to better understand the persistence of AMR Salmonella in residential broiler production systems and make comparisons with commercial systems. Ten backyard and 10 commercial farms were sampled at three time points across bird production. Both fecal (n = 10) and environmental (soil, n = 5, litter/compost, n = 5, feeder, and waterer swabs, n = 6) samples were collected at each visit on days 10, 31, and 52 of production for backyard farms and days 10, 24, and 38 of production for commercial farms. AMR Salmonella was characterized phenotypically by broth microdilution and genotypically by whole-genome sequencing. Overall, Salmonella was more prevalent in commercial farm samples (52.31%) over backyard farms (19.10%). Kentucky (sequence type (ST) 152) was the most common serotype found in both backyard and commercial farms. Multidrug-resistant (MDR, resistance to ≥3 or more antimicrobial classes) isolates were found in both production systems, while ciprofloxacin- and nalidixic acid-resistant and intermediate isolates were more prevalent in commercial (33%) than backyard samples (1%). Plasmids that have been associated with MDR were found in Kentucky and Infantis isolates, particularly IncFIB(K)_1_Kpn3 megaplasmid (Infantis). Our study emphasizes the need to understand the selection pressures in disseminating megaplasmids in MDR Salmonella in distinct broiler production systems.

2.
Food Microbiol ; 116: 104348, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689422

ABSTRACT

Campylobacter remains the leading cause of bacterial foodborne illness in the U.S. and worldwide. Campylobacter plasmids may play a significant role in antimicrobial resistance (AMR) and virulence factor distribution, and potentially drive rapid adaptation. C. coli (n = 345) and C. jejuni (n = 199) isolates collected from live cattle, swine, turkey, and chickens, poultry carcasses at production, and retail meat in N.C. were analyzed to determine plasmid prevalence, extrachromosomal virulence and AMR genes, and the phylogeny of assembled plasmids. Putative plasmids ranging from <2 kb to 237kb were identified with virulence factors present in 66.1% (228/345) C. coli and 88.4% (176/199) C. jejuni plasmids (promoting adherence, invasion, exotoxin production, immune modulation, chemotaxis, mobility, and the type IV secretion system). AMR genes were identified in 21.2% (73/345) C. coli and 28.1% C. jejuni plasmids (conferring resistance to tetracyclines, aminoglycosides, beta-lactams, nucleosides, and lincosamides). Megaplasmids (>100 kb) were present in 25.7% (140/544) of the isolates and carried genes previously recognized to be involved with interspecies recombination. Our study highlights the extensive distribution and diversity of Campylobacter plasmids in food animal production and their role in the dissemination of biomedically important genes. Characterizing Campylobacter plasmids within the food animal production niche is important to understanding the epidemiology of potential emerging strains.


Subject(s)
Campylobacter coli , Campylobacter jejuni , Campylobacter , Animals , Cattle , Swine , Campylobacter coli/genetics , Campylobacter jejuni/genetics , Virulence/genetics , North Carolina , Chickens , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Plasmids/genetics
3.
Sci Rep ; 12(1): 14822, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050365

ABSTRACT

Infections caused by multi-drug resistant Escherichia coli cause significant morbidity and mortality especially in developing countries. In this study, we describe the molecular characteristics of E. coli isolated from clinical specimens and the patients' outcomes. Phenotypic methods were used in the identification and antimicrobial susceptibility testing of E. coli from clinical specimens from a tertiary hospital in Abuja, Nigeria. Whole genome sequencing was used to describe the antimicrobial resistance genes, serotypes, sequence types/clonal complexes, and mobile genetic elements. The mean age of the patients was 20.3 years with 70.1% females and majority of isolates 75% from urine, 21% from blood cultures, and 3% each from cerebrospinal fluid and endo-cervical swabs. Of the 107 non-duplicate E. coli isolates, 101 (94.3%) were resistant to ampicillin, 95 (88.8%) to trimethoprim/sulfamethoxazole, 86 (80.4%) to ceftriaxone, 60 (56.1%) to gentamicin, and eight (7.5%) to meropenem. There were 102 (95.3%) isolates that were multi-drug resistant (MDR). Expression of Extended Spectrum Beta Lactamase (ESBL) phenotype was detected in 54 (50%) and blaCTX-M-15 genes detected in 75 (70.1%) isolates. The carbapenemase genes blaNDM-1 and blaNDM-5 were detected in six (5.6%), while the AmpC gene- blaCMY-2, was detected in seven (6.5%) isolates. Two (1.9%) isolates simultaneously harboured the blaOXA-1, blaCMY-2, blaCTX-M-15, and blaNDM-5 genes. In total, 35 sequence types (STs) were found with the majority being ST131 (n = 23; 21.5%). The most common serotype was O25:H4 associated with all 23 strains of ST131, followed by O1:H6/ST648 (n = 6). The ST410, ST671, and ST101 strains displayed phenotypic resistance to wide array of antibiotic classes and harbored high numbers of antibiotic resistance genes via in-silico analysis. The ST410 strain in particular harbored a higher number of antibiotic resistance genes and was phenotypically resistant to a wider array of antibiotics. Four pairs of isolates were closely related with three isolates (ST131, ST38, ST652) having a pairwise SNP difference of zero. 71/72 75/76 52/14. The MDR E. coli lineages circulating in this setting pose a clinical and public health threat as they can hinder effective prevention and management of infections. The genetic diversity and MDR E. coli with the emergence of ST410 and ST101 clones is concerning because of the potential for rapid dissemination in hospitals and communities- further increasing the problems of antibiotic resistance. Continuous routine surveillance of E. coli infections for AMR in hospitals becomes imperative, aimed at development of effective antimicrobial stewardship programs, facilitating prudent use of antimicrobial agents, and limiting dissemination of resistant strains.


Subject(s)
Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Escherichia coli Proteins/genetics , Female , Humans , Male , Microbial Sensitivity Tests , Nigeria/epidemiology , Tertiary Care Centers , beta-Lactamases/genetics , beta-Lactamases/metabolism
4.
Foodborne Pathog Dis ; 19(9): 637-647, 2022 09.
Article in English | MEDLINE | ID: mdl-35925756

ABSTRACT

An increasing number of outbreaks are caused by foodborne pathogens such as Escherichia coli and Salmonella, which often harbor antimicrobial resistance (AMR) genes. We previously demonstrated the transmission of pathogens from animal operations to produce fields on sustainable farms, which illustrated an urgent need to develop and implement novel prevention methods and remediation practices such as the vegetative buffer zone (VBZ) to prevent this movement. The focus of this study was to use whole-genome sequencing (WGS) to characterize the AMR, virulence, and single-nucleotide polymorphism profile of 15 Salmonella and 128 E. coli isolates collected from small-scale dairy and poultry farms on a research station in North Carolina. Phenotypically, seven E. coli and three Salmonella isolates displayed resistance to antibiotics such as tetracycline (n = 4), ampicillin (n = 4), nalidixic acid (n = 3), chloramphenicol (n = 2), sulfisoxazole (n = 1), and streptomycin (n = 1). A single E. coli isolate was found to be resistant to five different antibiotic class types and possessed the blaTEM-150 resistance gene. Virulence genes that facilitate toxin production and cell invasion were identified. Mauve analysis of the E. coli isolates identified seven clusters (dairy-six and poultry-one) indicating that transmission is occurring from animal operations to fresh produce fields and the surrounding environment when the VBZ is denudated. This suggests that the VBZ is a useful barrier to reducing the transmission of enteric pathogens in agricultural systems. Our study demonstrates the prevalence of AMR and virulence genes on small-scale sustainable farms and highlights the advantage of using WGS to assess the impact of the VBZ to reduce the transmission of E. coli and Salmonella.


Subject(s)
Escherichia coli Infections , Escherichia coli , Agriculture , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Escherichia coli Infections/veterinary , Microbial Sensitivity Tests , Poultry , Salmonella , Whole Genome Sequencing
5.
Int J Food Microbiol ; 378: 109821, 2022 Oct 02.
Article in English | MEDLINE | ID: mdl-35816956

ABSTRACT

An estimated 1000,000 domestic salmonellosis cases are attributed to food as a vehicle of exposure. Among Food Safety and Inspection Service (FSIS)-regulated products, approximately 360,000 salmonellosis cases are associated with consumption of meat, poultry, and egg products. Salmonella vaccination programs instituted in U.S. poultry, cattle, and swine production have effectively reduced the prevalence of common Salmonella enterica serotypes Typhimurium, Enteritidis, Choleraesuis (swine), and Dublin (cattle) in the past several years, with some evidence of cross-immunity to other serovars. This study investigated S. enterica (n = 741) from live food animals, meat carcasses at production, and retail meat in North Carolina collected January 2018 to December 2019. Whole-genome sequencing (WGS) and bioinformatics were used to molecularly characterize and compare AMR profiles, virulence, and phylogeny of Salmonella at three stages of food processing. Multidrug-resistant (MDR) plasmids identified also contained the integrase recombinase virulence factor int associated with mobile integrons, qacE conferred quaternary ammonia resistance, and diverse AMR profiles. MDR Plasmid IncFIB(K)_1_Kpn3_JN233704, with virulence factor int had 51 different AMR profiles within poultry S. enterica Infantis isolates. Plasmid-mediated virulence factors also appear to provide a fitness advantage, as the dominant S. enterica serotype Kentucky in chicken retail meat held the greatest diversity of plasmid-mediated colicin virulence genes which are often upregulated by environmental stressors and confer a competitive advantage. Mobile genetic element recombination is increasing pathogen fitness in the food chain through the dissemination of virulence factors and resistance genes to clinically important antibiotics, posing a significant threat to human health.


Subject(s)
Salmonella Infections , Salmonella enterica , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Drug Resistance, Multiple, Bacterial/genetics , Genomics , Humans , Meat , Microbial Sensitivity Tests , North Carolina , Plasmids , Poultry , Swine , Virulence/genetics , Virulence Factors/genetics
6.
PLoS One ; 17(3): e0266025, 2022.
Article in English | MEDLINE | ID: mdl-35325007

ABSTRACT

Salmonella enterica is the most common foodborne pathogen worldwide. It causes two types of diseases, a self-limiting gastroenteritis and an invasive, more threatening, infection. Salmonella gastroenteritis is caused by several serotypes and is common worldwide. In contrast, invasive salmonellosis is rare in high-income countries (HIC) while frequent in low- and middle-income countries (LMIC), especially in sub-Saharan Africa (sSA). Invasive Nontyphoidal Salmonella (iNTS), corresponding to serotypes other than Typhi and Paratyphi, have emerged in sSA and pose a significant risk to public health. We conducted a whole-genome sequence (WGS) analysis of 72 strains of Salmonella isolated from diarrheic human patients and chicken meat sold in multipurpose markets in Dakar, Senegal. Antimicrobial susceptibility testing combined with WGS data analysis revealed frequent resistance to fluoroquinolones and the sulfamethoxazole-trimethoprim combination that are among the most used treatments for invasive Salmonella. In contrast, resistance to the historical first-line drugs chloramphenicol and ampicillin, and to cephalosporins was rare. Antimicrobial resistance (AMR) was lower in clinical isolates compared to chicken strains pointing to the concern posed by the excessive use of antimicrobials in farming. Phylogenetic analysis suggested possible transmission of the emerging multidrug resistant (MDR) Kentucky ST198 and serotype Schwarzengrund from chicken to human. These results stress the need for active surveillance of Salmonella and AMR in order to address invasive salmonellosis caused by nontyphoidal Salmonella strains and other important bacterial diseases in sSA.


Subject(s)
Gastroenteritis , Salmonella Infections , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Gastroenteritis/microbiology , Genomics , Humans , Microbial Sensitivity Tests , Phylogeny , Salmonella , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Senegal/epidemiology
7.
Front Vet Sci ; 8: 725737, 2021.
Article in English | MEDLINE | ID: mdl-34540936

ABSTRACT

Virulent strains of Salmonella enterica subsp. enterica serovar Enteritidis (SE) harbored by poultry can cause disease in poultry flocks and potentially result in human foodborne illness. Two broiler flocks grown a year apart on the same premises experienced mortality throughout the growing period due to septicemic disease caused by SE. Gross lesions predominantly consisted of polyserositis followed by yolk sacculitis, arthritis, osteomyelitis, and spondylitis. Tissues with lesions were cultured yielding 59 SE isolates. These were genotyped by Rep-PCR followed by whole-genome sequencing (WGS) of 15 isolates which were clonal. The strain, SE_TAU19, was further characterized for antimicrobial susceptibility and virulence in a broiler embryo lethality assay. SE_TAU19 was resistant to nalidixic acid and sulfadimethoxine and was virulent to embryos with 100% mortality of all challenged broiler embryos within 3.5 days. Screening the SE_TAU19 whole-genome sequence revealed seven antimicrobial resistance (AMR) genes, 120 virulence genes, and two IncF plasmid replicons corresponding to a single, serovar-specific pSEV virulence plasmid. The pef, spv, and rck virulence genes localized to the plasmid sequence assembly. We report phenotypic and genomic features of a virulent SE strain from persistently infected broiler flocks and present a workflow for SE characterization from isolate collection to genome assembly and sequence analysis. Further SE surveillance and investigation of SE virulence in broiler chickens is warranted.

8.
PLoS One ; 16(2): e0246571, 2021.
Article in English | MEDLINE | ID: mdl-33571292

ABSTRACT

The Center for Disease Control and Prevention identifies antimicrobial resistant (AMR) Campylobacter as a serious threat to U.S. public health due to high community burden, increased transmissibility, and limited treatability. The National Antimicrobial Resistance Monitoring System (NARMS) plays an important role in surveillance of AMR bacterial pathogens in humans, food animals and retail meats. This study investigated C. coli and C. jejuni from live food animals, poultry carcasses at production, and retail meat in North Carolina between January 2018-December 2019. Whole genome sequencing and bioinformatics were used for phenotypic and genotypic characterization to compare AMR profiles, virulence factors associated with Guillain-Barré Syndrome (GBS) (neuABC and cst-II or cst-III), and phylogenic linkage between 541 Campylobacter isolates (C. coli n = 343, C. jejuni n = 198). Overall, 90.4% (489/541) Campylobacter isolates tested positive for AMR genes, while 43% (233/541) carried resistance genes for three or more antibiotic classes and were classified molecularly multidrug resistant. AMR gene frequencies were highest against tetracyclines (64.3%), beta-lactams (63.6%), aminoglycosides (38.6%), macrolides (34.8%), quinolones (24.4%), lincosamides (13.5%), and streptothricins (5%). A total of 57.6% (114/198) C. jejuni carried GBS virulence factors, while three C. coli carried the C. jejuni-like lipooligosaccharide locus, neuABC and cst-II. Further evidence of C. coli and C. jejuni interspecies genomic exchange was observed in identical multilocus sequence typing, shared sequence type (ST) 7818 clonal complex 828, and identical species-indicator genes mapA, ceuE, and hipO. There was a significant increase in novel STs from 2018 to 2019 (2 in 2018 and 21 in 2019, p<0.002), illustrating variable Campylobacter genomes within food animal production. Introgression between C. coli and C. jejuni may aid pathogen adaption, lead to higher AMR and increase Campylobacter persistence in food processing. Future studies should further characterize interspecies gene transfer and evolutionary trends in food animal production to track evolving risks to public health.


Subject(s)
Campylobacter coli/genetics , Campylobacter jejuni/genetics , Drug Resistance, Bacterial , Gene Transfer, Horizontal , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Campylobacter coli/drug effects , Campylobacter coli/isolation & purification , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification , Meat/microbiology , North Carolina , Poultry/microbiology
9.
J Glob Antimicrob Resist ; 22: 578-583, 2020 09.
Article in English | MEDLINE | ID: mdl-32534045

ABSTRACT

OBJECTIVE: The study aimed to identify the antimicrobial resistance (AMR) determinants and virulence factors in Salmonella spp. and Escherichia coli recovered from different anthropogenic areas in North Carolina. METHODS: Soil samples were collected from different anthropogenic areas, urban and natural. The minimum inhibitory concentration (MIC) was determined by using the broth microdilution method. Whole-genome sequencing (WGS) and analysis were done to identify the AMR determinants and virulence factors. RESULTS: A higher prevalence of Salmonella spp. and E. coli was detected in the urban environment. The Salmonella spp. isolates showed resistance to sulfisoxazole and streptomycin, whereas E. coli was resistant to sulfisoxazole, cefoxitin and ampicillin. Salmonella serotypes Schwarzengrund and Mississippi were identified based on WGS analysis. Aminoglycoside resistance genes and IncFIB and IncFIC(FII) plasmids were detected among Salmonella spp. In general, E. coli was predominated by isolates from phylogroups B1, B2 and D. The multidrug transporter mdfA gene was detected in most of the E. coli from both the urban (100%) and natural (84.5%) environments. The FosA7 gene was detected in an isolate from a residential yard. The pCoo and pB171 plasmids were detected in an urban environment; col(156) and pHN7A8 plasmids were detected in natural environments. CONCLUSIONS: The detection of AMR determinants and virulence factors in these bacteria is significant in understanding the occurrence and even the development of AMR. The presence of these determinants in different anthropogenic areas suggests the need to conduct longitudinal studies for comparing the profile of pathogens across different environments.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Escherichia coli/genetics , Membrane Transport Proteins , Salmonella/genetics , Virulence Factors/genetics
10.
One Health Outlook ; 2: 8, 2020.
Article in English | MEDLINE | ID: mdl-33829130

ABSTRACT

BACKGROUND: Globally, chicken is known to be a reservoir for the spread of antimicrobial resistance genes to humans. In Nigeria, antimicrobial drugs are readily accessible for use in poultry production, either for preventive or therapeutic purposes. Extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) are transmissible to humans because of their zoonotic potentials. People working very closely with chickens either on farms or markets are at greater risk. The aim of this study was to investigate the prevalence and zoonotic transmission of ESBL-EC among poultry-workers, chickens, and poultry environments in Abuja, Nigeria. METHODS: We conducted a cross-sectional study among workers, chickens and poultry environment in selected farms/chicken markets in Abuja. Stool, faecal, and environmental samples were collected from apparently healthy workers, chickens, and farm/market environments from December 2018 to April 2019. Data were collected electronically using an open data kit (ODK) installed on a Smartphone. Antimicrobial resistance was determined using broth micro-dilution methods against a panel of 14 antimicrobial agents. We carried out the phenotypic and genotypic characterization of the isolates. Data were analyzed by computing frequencies, proportions and spearman's correlation (ρ). RESULTS: Of 429 samples, 26.8% (n = 115) were positive for Escherichia coli (E. coli). Of the 115 E. coli isolates, 32.2% (n = 37) were confirmed ESBL producers by phenotypic characterization. Prevalence of ESBL-EC was highest among both poultry-workers (37.8%; n = 14) and chickens (37.8%; n = 14) followed by the environment (24.3%; n = 9). Both human and chicken isolates showed similar patterns of multidrug resistance to tested antimicrobials with a positive correlation (ρ = 0.91). Among ESBL producers, we observed the dissemination of blaCTX-M (10.8%; n = 4) genes. The coexistence of blaCTX-M-15 and blaTEM-1 genes was observed in 8.1% (n = 3) of the isolates, out of which (66.7%; n = 2) were chicken isolates from the farm, while a single human isolate was from the chicken market. CONCLUSIONS: ESBL-EC isolates were prevalent amongst apparently healthy individuals, chickens and the poultry farm/market environment in Abuja. It is important to educate healthcare workers that people in proximity with poultry are a high-risk group for faecal carriage of ESBL-EC, hence pose a higher risk to the general population for the spread of antimicrobial resistance.

11.
Mol Biol Cell ; 17(8): 3678-88, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16723499

ABSTRACT

RNA interference (RNAi) is a conserved gene-silencing phenomenon that can be triggered by delivery of double-stranded RNA (dsRNA) to cells and is a widely exploited technology in analyses of gene function. Although a number of proteins that facilitate RNAi have been identified, current descriptions of RNAi and interrelated mechanisms are far from complete. Here, we report that the Caenorhabditis elegans gene haf-6 is required for efficient RNAi. HAF-6 is a member of the ATP-binding cassette (ABC) transporter gene superfamily. ABC transporters use ATP to translocate small molecule substrates across the membranes in which they reside, often against a steep concentration gradient. Collectively, ABC transporters are involved in a variety of activities, including protective or barrier mechanisms that export drugs or toxins from cells, organellar biogenesis, and mechanisms that protect against viral infection. HAF-6 is expressed predominantly in the intestine and germline and is localized to intracellular reticular organelles. We further demonstrate that eight additional ABC genes from diverse subfamilies are each required for efficient RNAi in C. elegans. Thus, the ability to mount a robust RNAi response to dsRNA depends upon the deployment of two ancient systems that respond to environmental assaults: RNAi mechanisms and membrane transport systems that use ABC proteins.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , RNA Interference , Alleles , Animals , Caenorhabditis elegans/cytology , Genes, Reporter , Mutant Proteins/metabolism , Phenotype , Protein Transport , RNA, Double-Stranded/genetics
12.
Methods Mol Biol ; 265: 23-58, 2004.
Article in English | MEDLINE | ID: mdl-15103067

ABSTRACT

The nematode Caenorhabditis elegans is often employed in investigations of diverse aspects of biology, including behavior, development, basic cellular processes, and disease states. The ability to utilize double-stranded RNA (dsRNA) to inhibit specific gene function in this organism has dramatically increased its value for these kinds of studies and has provided more flexibility in experimental design that include procedures. Here, we have collected a set of protocols from the C. elegans community for propagation of C. elegans, techniques for dsRNA preparation, four basic methods for delivery of dsRNA to C. elegans (injection, soaking, feeding, and in vivo delivery), and we suggest schemes that should facilitate detection of specific gene silencing.


Subject(s)
Caenorhabditis elegans/genetics , RNA, Double-Stranded/genetics , Animals , Microinjections , Molecular Biology/methods , Plasmids/genetics , RNA, Double-Stranded/administration & dosage , Templates, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...